
Staex public
network
A network for IoT 
devices



Staex public network is an experiment to 
use zero-trust network as a backbone of the 
Internet of Things. In this paper we discuss 
why we are creating such a network and how 
it can be useful to anyone dealing with IoT 
devices. 

Why public network?
Today IoT devices — IP cameras, smart 

meters, smart lights, smart sockets, smart 
fridges, etc. — are made available on the In‐
ternet through numerous cloud services, and 
while this solution currently works (no one 
can access your devices unless they hack 
the cloud provider) in many cases cloud does 
not add any meaningful functionality to what 
is already available through the device itself 
using standard protocols like HTTP, RTSP, 
MQTT.

The reason that we can not use this func‐
tionality without a cloud is two-fold: some of 
these protocols were never designed to work 
over the Internet and the Internet was never 
designed as a network for such devices. 
HTTP (without "S"), RTSP and many other 
protocols do not use encryption and public 
key exchange to initiate secure connection, 
and even if they did, bringing resource-con‐
strained devices to the Internet will expose 
them to DDoS attacks and make it easy for 
adversaries to exploit zero-day vulnerabilities 
in the firmware.

The current solution to this problem (con‐
necting these devices to the cloud) is quite 
an overkill for implementing secure commu‐
nication channel. What we really need is the 
security on the network level so that IoT de‐
vice vendors would not need to reimplement 
security for each of their devices. Solving this 
problem on a network level also improves 
users' privacy because they no longer need 
to rely on the cloud providers that often at‐
tract hackers by storing user data in one cen‐
tral location.

What is Staex public
network?

Staex public network is an Internet overlay 
that hides real IP addresses of the devices, 
uses public keys as addresses, and prohibits 
any traffic by default. Staex provides end-to-
end encryption and trust on the network 
level, and automates making IoT devices a 
part of the network (port forwarding and 
DNAT). 

Public keys as addresses

Staex uses public keys of the nodes as 
their addresses. This approach, pioneered by 
Yggdrasil network, aims to protect from the 
whole class of address spoofing attacks — 
the only way to spoof the address is to steal 
the private key, and the private key never 
leaves the node.

How do we map public keys to IP ad‐
dresses? We use public keys as DNS names 
and resolve them locally on each node to dy‐
namic IP addresses that are used to actually 
send IP packets.

Hiding real IP addresses

With public keys as addresses it is 
straightforward to hide the real IP address: if 
the traffic goes through at least one interme‐
diate node, then there is no way to know the 
real IP address of the device. To support 
such a use case Staex implements multi-hop 
routing: the network has tree-like topology 
and nodes always use shortest path be‐
tween each other for the communication.



We accumulate routing tables of all the 
nodes in the root node. If a node can not find 
packet's destination in its own routing table, 
it forwards the packet to its parent until it 
reaches the root node. This means that the 
root node knows the topology of the whole 
network and can actually find the shortest 
path. This does not mean that the root node 
is different from others, in fact it runs the 
same program and makes routing decisions 
the same way as any other node. So, if you 
have another intermediate node between the 
leaf and the root and the destination node 
can be reached via this node, then the traffic 
will not reach root node at all. You can read 
more about the routing in the last section of 
this paper.

Restricting traffic

Having node keys is not enough for the se‐
cure communication, you also need to sign 
them with network-wide key. Every user has 
such a key and this key is used to sign node 
keys and the packets that carry initial public 
key exchange data. This signature protects 
the traffic from man-in-the-middle attacks 
and relieves you from manually adding a list 
of authorized keys to each node (this is in 
contrast to how OpenSSH works by default).

Network-wide keys are also used to seg‐
ment the public network into subnetworks 
without using the usual prefixes and network 
masks. By default nodes will not communi‐
cate with each other if their keys are signed 
by different network keys, however, you can 
override that by adding other network or 
node keys as trusted.

Conclusion and future plans
Staex public network is an experiment to 

use zero-trust network as a backbone of the 
Internet of Things. Prohibiting any communi‐
cation by default and any direct communica‐
tion in principle is paradoxical for something 
that we call "a network", however, resource-

constrained IoT devices and legacy protocols 
can not be safely used over the modern In‐
ternet. Staex makes certificate-based trust 
and end-to-end encryption the default for any 
protocol whether it is legacy or modern.

We plan to update our built-in DNS to work 
properly in public network (it was designed 
to work in a network with single owner), and 
enable endpoint-based security (per-end‐
point private keys and trust) with the release 
of Staex v2.

Appendix

Routing

What routing algorithm Staex network 
uses? Staex network topology is a directed 
graph. The edge goes from child node to par‐
ent node. Each node can be simultaneously 
a child and a parent.

The node state (e.g. its static IPv4 ad‐
dress, domain name, certificates) propa‐
gates from child to parent nodes, and the 
root of the topology — a node that does not 
have any parents but can reach any other 
node via edges — has a copy of each other 
node's state, i.e. knows everything about the 
network.

The routing uses Dijkstra algorithm that 
finds the shortest path between the source 
and destination nodes of a packet. If the 
path can not be found by the local node, the 
packet is sent to the parent node. This re‐
peats until the root node is reached. If the 
root node can not find the path, then the 
packet is dropped.

We permit cycles in the graph, however, 
we encourage to stick to tree-like topologies 
to optimize node state propagation.

We also permit a node to have multiple 
parents. In this case only one parent is active 
at a time. When it goes offline, the child auto‐
matically switches to the next parent in the 
list. This allows the network to gracefully 
handle root node failures and restarts.



To summarize,
• we support any network topology that is a 
directed graph,
• we use shortest-path algorithm to find the 
best route for each packet,
• we have built-in support for root node fail‐
ures that otherwise would be single point of 
failuires.

Such flexibility allows us to support use 

cases where some nodes have Internet con‐
nectivity, but others do not. The nodes that 
do not have direct access to the Internet 
would be able to get it via Staex network. 
With this multi-hop architecture it is possible 
to setup networks in hard-to-reach locations: 
forests, mountains, and even between two 
islands if there is enough traffic that hosts 
Staex nodes that work as relays.


